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1 Introduction

Grid and networking researchers continue the practice of man-
ually optimizing TCP buffer sizes to keep the network pipe full
[10, 7], and thus achieve acceptable performance over the wide-
area network, whether for bulk-data transfer or in support of
computational grids [4], data grids [1, 8, 3], or access grids
[2]. Not only is this process cumbersome, but the result of
tuning window sizes for a particular pair of hosts is sub-par
performance for connections with larger delay-bandwidth prod-
ucts and the misappropriation of scarse resources to connections
with smaller delay-bandwidth products [9].

Consequently, we propose an operating system technique
called Dynamic Right-Sizing that eliminates the need for this
manual process. Compared to previous work on this problem,
our solution is more efficient and both more transparent and
widely-usable to applications.

The Web100 project has released a modified FTP client that
uses user-space code to send a burst of pings to estimate the la-
tency and bandwidth at the beginning of a connection and adjust
the windows accordingly [6]. This approach requires that this
measurement code be deployed in each application. Further, it
uses a measurement period before data is sent and creates ex-
tra network traffic that is not controlled by a congestion avoid-
ance mechanism. Thus, it can only be used sparingly, such as at
the beginning of a connection. In contrast, our implementation
automatically benefits not just FTP, but every application on a
host.

Earlier work in [9] presents kernel modifications for *auto-
tuning’ a sender’s flow-control window based on the conges-
tion window and then using fair-share algorithms to manage
competition between connections for buffers. In this scheme,
the receiver’s window advertisements are superfluous. This so-
lution does not adequaquately solve the problem for applica-
tions such as archival storage where the bottleneck in a connec-
tion is the receiving application instead of the network. In this
context, the receiver still needs flow control or else unbounded
amounts of receiver buffer space can be consumed by data that
has been received and acknowledged by the operating system,
but is waiting for the receiving application. This could in turn
require the receiver to resort to dropping packets and unnec-
essary triggering of the sender’s congestion avoidance mecha-
nisms, thus wasting bandwidth and reducing throughput. Our
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technique complements the ‘auto-tuning’ presented in [9] by
providing the receiver with the ability to measure the size of the
sender’s congestion window, and more fairly allocate buffers to
connections based on their need for buffers.

2 Dynamic Right-sizing

In short, Dynamic Right-sizing lets the receiver estimate the
sender’s congestion window size and use that estimate to dy-
namically change the size of the receiver’s window advertise-
ments. As a result, the sender will be congestion-window-
limited rather than flow-control-window-limited.

A sender can send no more than one window’s worth of data
between acknowledgements. Accordingly, a burst that is shorter
than a round-trip time can contain at most one window’s worth
of data. Thus, for any period of time that is shorter than a round-
trip time, the amount of data seen by the receiver over that pe-
riod is a lower-bound on the size of the sender’s window. Some
data may be lost or delayed by the network, so the sender may
have sent more than the amount of data seen. Further, the sender
may not have had a full window’s worth of data to send. So the
window may be significantly larger than this lower-bound, but
not if the connection is truly limited by the receiver’s window.
Measuring this minimum and making sure that the receiver’s
advertised window is always larger will let the receiver track
the congestion window size.

To make these measurements, it is necessary for the receiver
to know the round-trip time. In a typical TCP implementation,
the round-trip time is measured by observing the time between
when data is sent and an acknowledgement is returned [5]. But
during a bulk-data transfer, the receiver might not be sending
any data and would therefore not have a good round-trip time
estimate. For instance, an FTP data connection transmits data
entirely in one direction. A system that is only transmitting
acknowledgements can still estimate the round-trip time by ob-
serving the time between when a byte is first acknowledged and
the receipt of data that is at least one window beyond the se-
quence number that was acknowledged. If the sender is being
throttled by the network, this estimate will be valid. However,
if the sending application did not have any data to send, the
measured time could be much larger than the actual round-trip
time. Thus this measurement acts only as an upper-bound on
the round-trip time and should be be used only when it is the
only source of round-trip time information.
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Figure 1: Progress of data transfers
2.1 Impact of Timer Imprecision

Like many systems, the system timer in Linux is limited to a
precision of 10ms. In this section we explore the impact of
using this efficient, but imprecise measure of time.

Assume the salient scenario where a sender is always send-
ing as fast as possible, but that the network may delay packets
arbitrarily. However, we are concerned with the case were the
sender is limited by the window-size, so that network delays are
small enough that no timeouts occur. Further assume that the
window-size is not fluctuating during a measurement. Then the
receiver can determine that the window size limiting the sender
is bounded as follows:
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Where d bytes of data have been received over some number of
round-trip times between 7, and nyyqz.

Any measurement period consists of some number of whole
round-trip times plus fractional round-trip times preceding and
following the complete round-trips. The possible number of
round-trip periods observed is a whole number bounded as fol-

lows:
[%w <n< {%J+2 @)

Due to similar fence-post problems, a measurement of dura-
tion equal to one round-trip time may actually be up to 20ms
longer than the round-trip time. Combining these facts with
bounds 1 and 2 yields:
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Thus, in no case will the actual window be larger than the
measured amount of data received during the period. However,
the amount of data received during the period may be three
times the actual window size when measurements are made
across wide-area networks with r¢¢ > 20ms. Further, local
networks with small round-trip delays may be grossly over-
estimated.

We therefore conclude that measurements made with coarse
timers will not cause dynamic right-sizing to underestimate the
window size or negatively impact throughput. However, to
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make more accurate decisions for memory sharing under pres-
sure, it is advantageous to use precise timers. Many CPU archi-
tectures now feature hardware time counters that can be used to
efficiently obtain a precise timestamp. In future versions of our
implementation, we will pursue the use of these counters. How-
ever, our use of these counters will also require that the standard
TCP round-trip time estimation be done with equivalent preci-
sion.

3 Experimental Performance

In Figure 1, 50 transfers were made between Linux 2.2 systems
modified to perform Dynamic Right-Sizing and connected by a
network with an emulated round-trip delay of 100ms. The first
25 transfers used the default window sizes of 64 kilobytes for
both the sender and receiver. The second 25 transfers, shown
in dotted lines, used the dynamically sized windows described
above.

In Figures 2 and 3, we examine the window sizes during two
of the above transfers. The amount of sent, but unacknowl-
edged data in the sender’s buffer is known as the flightsize. The
flightsize is in turn bounded by the window advertised by the
receiver. Figure 2 shows that in the traditional, static case with-
out dynamic right-sizing, the congestion window, and conse-
quently flightsize quickly grow equal to the size of the window
advertisements. For most of the duration of the connection, it is
limited by the receiver’s low window advertisement of 32KB.

In contrast, during the dynamic right-sizing case shown in
Figure 3, the receiver is able, during most of the connection, to
advertise a window size that is roughly twice the largest flight-
size seen to date. As a result, the flightsize is only constrained
by the congestion window and the delay-bandwidth product.
Slow start continues for much longer and stops only when there
is packet loss. At this point the congestion window stabilizes on
a flightsize that is 7 times higher than the constrained flightsize
of the static case. This 7-fold increase in the average flightsize
is the source of the same, 7-fold increase in throughput demon-
strated in Figure 1.
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